0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 DuplicateArgsRemoverProof (⇔)
↳6 ITRS
↳7 ITRStoIDPProof (⇔)
↳8 IDP
↳9 UsableRulesProof (⇔)
↳10 IDP
↳11 IDPNonInfProof (⇐)
↳12 AND
↳13 IDP
↳14 IDependencyGraphProof (⇔)
↳15 TRUE
↳16 IDP
↳17 IDependencyGraphProof (⇔)
↳18 TRUE
No human-readable program information known.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Load739(x1, x2, x3, x4) → Load739(x2, x3, x4)
Cond_Load739(x1, x2, x3, x4, x5) → Cond_Load739(x1, x3, x4, x5)
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i50[0] →* i50[1])∧(i54[0] > 1 && i50[0] >= i54[0] && i52[0] + 1 > 0 →* TRUE)∧(i54[0] →* i54[1])∧(i52[0] →* i52[1]))
(1) -> (0), if ((i50[1] / i54[1] →* i50[0])∧(i54[1] →* i54[0])∧(i52[1] + 1 →* i52[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i50[0] →* i50[1])∧(i54[0] > 1 && i50[0] >= i54[0] && i52[0] + 1 > 0 →* TRUE)∧(i54[0] →* i54[1])∧(i52[0] →* i52[1]))
(1) -> (0), if ((i50[1] / i54[1] →* i50[0])∧(i54[1] →* i54[0])∧(i52[1] + 1 →* i52[0]))
(1) (i50[0]=i50[1]∧&&(&&(>(i54[0], 1), >=(i50[0], i54[0])), >(+(i52[0], 1), 0))=TRUE∧i54[0]=i54[1]∧i52[0]=i52[1] ⇒ LOAD739(i50[0], i54[0], i52[0])≥NonInfC∧LOAD739(i50[0], i54[0], i52[0])≥COND_LOAD739(&&(&&(>(i54[0], 1), >=(i50[0], i54[0])), >(+(i52[0], 1), 0)), i50[0], i54[0], i52[0])∧(UIncreasing(COND_LOAD739(&&(&&(>(i54[0], 1), >=(i50[0], i54[0])), >(+(i52[0], 1), 0)), i50[0], i54[0], i52[0])), ≥))
(2) (>(+(i52[0], 1), 0)=TRUE∧>(i54[0], 1)=TRUE∧>=(i50[0], i54[0])=TRUE ⇒ LOAD739(i50[0], i54[0], i52[0])≥NonInfC∧LOAD739(i50[0], i54[0], i52[0])≥COND_LOAD739(&&(&&(>(i54[0], 1), >=(i50[0], i54[0])), >(+(i52[0], 1), 0)), i50[0], i54[0], i52[0])∧(UIncreasing(COND_LOAD739(&&(&&(>(i54[0], 1), >=(i50[0], i54[0])), >(+(i52[0], 1), 0)), i50[0], i54[0], i52[0])), ≥))
(3) (i52[0] ≥ 0∧i54[0] + [-2] ≥ 0∧i50[0] + [-1]i54[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD739(&&(&&(>(i54[0], 1), >=(i50[0], i54[0])), >(+(i52[0], 1), 0)), i50[0], i54[0], i52[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i50[0] ≥ 0∧[(-1)bso_16] ≥ 0)
(4) (i52[0] ≥ 0∧i54[0] + [-2] ≥ 0∧i50[0] + [-1]i54[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD739(&&(&&(>(i54[0], 1), >=(i50[0], i54[0])), >(+(i52[0], 1), 0)), i50[0], i54[0], i52[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i50[0] ≥ 0∧[(-1)bso_16] ≥ 0)
(5) (i52[0] ≥ 0∧i54[0] + [-2] ≥ 0∧i50[0] + [-1]i54[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD739(&&(&&(>(i54[0], 1), >=(i50[0], i54[0])), >(+(i52[0], 1), 0)), i50[0], i54[0], i52[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i50[0] ≥ 0∧[(-1)bso_16] ≥ 0)
(6) (i52[0] ≥ 0∧i54[0] ≥ 0∧i50[0] + [-2] + [-1]i54[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD739(&&(&&(>(i54[0], 1), >=(i50[0], i54[0])), >(+(i52[0], 1), 0)), i50[0], i54[0], i52[0])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i50[0] ≥ 0∧[(-1)bso_16] ≥ 0)
(7) (i52[0] ≥ 0∧i54[0] ≥ 0∧i50[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD739(&&(&&(>(i54[0], 1), >=(i50[0], i54[0])), >(+(i52[0], 1), 0)), i50[0], i54[0], i52[0])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [bni_15]i54[0] + [bni_15]i50[0] ≥ 0∧[(-1)bso_16] ≥ 0)
(8) (i50[0]=i50[1]∧&&(&&(>(i54[0], 1), >=(i50[0], i54[0])), >(+(i52[0], 1), 0))=TRUE∧i54[0]=i54[1]∧i52[0]=i52[1]∧/(i50[1], i54[1])=i50[0]1∧i54[1]=i54[0]1∧+(i52[1], 1)=i52[0]1 ⇒ COND_LOAD739(TRUE, i50[1], i54[1], i52[1])≥NonInfC∧COND_LOAD739(TRUE, i50[1], i54[1], i52[1])≥LOAD739(/(i50[1], i54[1]), i54[1], +(i52[1], 1))∧(UIncreasing(LOAD739(/(i50[1], i54[1]), i54[1], +(i52[1], 1))), ≥))
(9) (>(+(i52[0], 1), 0)=TRUE∧>(i54[0], 1)=TRUE∧>=(i50[0], i54[0])=TRUE ⇒ COND_LOAD739(TRUE, i50[0], i54[0], i52[0])≥NonInfC∧COND_LOAD739(TRUE, i50[0], i54[0], i52[0])≥LOAD739(/(i50[0], i54[0]), i54[0], +(i52[0], 1))∧(UIncreasing(LOAD739(/(i50[1], i54[1]), i54[1], +(i52[1], 1))), ≥))
(10) (i52[0] ≥ 0∧i54[0] + [-2] ≥ 0∧i50[0] + [-1]i54[0] ≥ 0 ⇒ (UIncreasing(LOAD739(/(i50[1], i54[1]), i54[1], +(i52[1], 1))), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]i50[0] ≥ 0∧[(-1)bso_21] + i50[0] + [-1]max{i50[0], [-1]i50[0]} + min{max{i54[0], [-1]i54[0]} + [-1], max{i50[0], [-1]i50[0]}} ≥ 0)
(11) (i52[0] ≥ 0∧i54[0] + [-2] ≥ 0∧i50[0] + [-1]i54[0] ≥ 0 ⇒ (UIncreasing(LOAD739(/(i50[1], i54[1]), i54[1], +(i52[1], 1))), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]i50[0] ≥ 0∧[(-1)bso_21] + i50[0] + [-1]max{i50[0], [-1]i50[0]} + min{max{i54[0], [-1]i54[0]} + [-1], max{i50[0], [-1]i50[0]}} ≥ 0)
(12) (i52[0] ≥ 0∧i54[0] + [-2] ≥ 0∧i50[0] + [-1]i54[0] ≥ 0∧[2]i50[0] ≥ 0∧[2]i54[0] ≥ 0 ⇒ (UIncreasing(LOAD739(/(i50[1], i54[1]), i54[1], +(i52[1], 1))), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]i50[0] ≥ 0∧[-1 + (-1)bso_21] + i54[0] ≥ 0)
(13) (i52[0] ≥ 0∧i54[0] ≥ 0∧i50[0] + [-2] + [-1]i54[0] ≥ 0∧[2]i50[0] ≥ 0∧[4] + [2]i54[0] ≥ 0 ⇒ (UIncreasing(LOAD739(/(i50[1], i54[1]), i54[1], +(i52[1], 1))), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [bni_17]i50[0] ≥ 0∧[1 + (-1)bso_21] + i54[0] ≥ 0)
(14) (i52[0] ≥ 0∧i54[0] ≥ 0∧i50[0] ≥ 0∧[4] + [2]i54[0] + [2]i50[0] ≥ 0∧[4] + [2]i54[0] ≥ 0 ⇒ (UIncreasing(LOAD739(/(i50[1], i54[1]), i54[1], +(i52[1], 1))), ≥)∧[bni_17 + (-1)Bound*bni_17] + [bni_17]i54[0] + [bni_17]i50[0] ≥ 0∧[1 + (-1)bso_21] + i54[0] ≥ 0)
(15) (i52[0] ≥ 0∧i54[0] ≥ 0∧i50[0] ≥ 0∧[2] + i54[0] + i50[0] ≥ 0∧[2] + i54[0] ≥ 0 ⇒ (UIncreasing(LOAD739(/(i50[1], i54[1]), i54[1], +(i52[1], 1))), ≥)∧[bni_17 + (-1)Bound*bni_17] + [bni_17]i54[0] + [bni_17]i50[0] ≥ 0∧[1 + (-1)bso_21] + i54[0] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = [2]
POL(LOAD739(x1, x2, x3)) = [-1] + x1
POL(COND_LOAD739(x1, x2, x3, x4)) = [-1] + x2
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(1) = [1]
POL(>=(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(0) = 0
Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)
POL(/(x1, i54[0])1 @ {LOAD739_3/0}) = max{x1, [-1]x1} + [-1]min{max{x2, [-1]x2} + [-1], max{x1, [-1]x1}}
COND_LOAD739(TRUE, i50[1], i54[1], i52[1]) → LOAD739(/(i50[1], i54[1]), i54[1], +(i52[1], 1))
LOAD739(i50[0], i54[0], i52[0]) → COND_LOAD739(&&(&&(>(i54[0], 1), >=(i50[0], i54[0])), >(+(i52[0], 1), 0)), i50[0], i54[0], i52[0])
COND_LOAD739(TRUE, i50[1], i54[1], i52[1]) → LOAD739(/(i50[1], i54[1]), i54[1], +(i52[1], 1))
LOAD739(i50[0], i54[0], i52[0]) → COND_LOAD739(&&(&&(>(i54[0], 1), >=(i50[0], i54[0])), >(+(i52[0], 1), 0)), i50[0], i54[0], i52[0])
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
/1 →
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |